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Stability of the charged particle configuration of a 
nonlinear electromagnetic field 

Adam Bechler 
Institute of Theoretical Physics, University of Warsaw, Hoia 69, 00-681 Warsaw, Poland 

Received 12 July 1979 

Abstract. The stability of the configuration of a non-linear electromagnetic field cor- 
responding to a charged point source is studied. The static classical solution of the field 
equations, describing charged particles has been modified by a small perturbation obeying 
linearised field equations. Assuming time dependence of the perturbation in the form 
exp(-iwt) it has been shown that w 2  is non-negative and the classical static configuration of 
the field describing charged particles is stable. Detailed analysis of the linearised field 
equations has been performed for the Born-Infeld model of the non-linear electromagnetic 
field. There is only a continuous spectrum of w 2  with certain distinct values of o 
corresponding to the resonant states. The problem of the zero modes connected with 
translational invariance is also studied. 

1. Introduction 

Recently there has been a great deal of interest in the classical solutions of non-linear 
field equations (Jackiw 1977, t'Hooft 1974, Nielsen and Olesen 1973, Beliavin et a1 
1975). The relevance of this type of solution to elementary particle physics is still 
uncertain although there is some hope that they might describe localised particle states 
and provide some insight into the non-perturbative structure of quantum field theory 
(Jackiw 1977). 

Classical solutions of the field equations, being solutions of the Euler-Lagrange 
equations of a variational problem, give stationary values of the action functional. If 
they are to describe stable particles the action functional should have a local minimum 
for these solutions, i.e. the second variation of the action should be non-negative. To 
examine stability one modifies the classical solution by a small perturbation with the 
exponential time dependence exp( - iot) .  This perturbation fulfills linearised field 
equations with U *  as an eigenvalue. If the spectrum does not contain negative 
eigenvalues the classical solution is stable, i.e. small perturbations do not lead to 
solutions either growing or decaying in time. 

In this paper we are going to investigate the stability of the configuration of a 
non-linear electromagnetic field corresponding to a charged point source. In general, 
any non-linear model of the electromagnetic field can be described by a Lagrange 
function of the type 2 = 3 ( S ,  P), where 2 is an, in principle arbitrary, function of two 
variables S = (+)(E2 -I?'), P = E .  B.  Due to a non-linear dependence of the induction 
D on the electric field E a model of this type can possess Coulomb-like configurations of 
the field with finite energy, in contrast with the linear Maxwell theory. 

0305-4470/80/041409 + 13$01.50 @ 1980 The Institute of Physics 1409 



1410 A Bechler 

We are here dealing with one particular model of a non-linear electromagnetic field 
formulated a long time ago by Born and Infeld (1934a, b). The Lagrange function of 
this model has the following form 

where b is a parameter with the dimension of the field. Although this Lagrangian is 
different from the realistic effective Lagrangian in quantum electrodynamics (Heisen- 
berg and Euler 1936, Schwinger 1951), it nevertheless describes a very interesting 
model of non-linear phenomena in the electromagnetic field. The main reason is that 
the Born-Infeld theory seems to play a prominent role among various possible models 
with a Lagrangian 2 ( S ,  P). 

First of all, as has been shown by Boillat (1970) and Plebanski (1970), this model of a 
non-linear electromagnetic field is the only one in which double refraction of the plane 
electromagnetic waves does not occur. Another advantage of this theory is its 
considerable simplicity which, however, does not exclude various interesting features 
and, on the other hand, allows to find a Coulomb solution in a closed form. This is not 
the case, for instance, for the Heisenberg-Euler Lagrangian where due to its complexity 
E(D)cannot  be found in a closed form. For these reasons we found it interesting to 
investigate the stability of the Coulomb solution in the Born-Infeld electrodynamics. 

The paper is organised as follows. In 9 2  we give a general description of the 
non-linear electromagnetic field. Section 3 deals with the problem of stability of the 
Coulomb solution and 0 4 is devoted to the description of the zero modes connected 
with translational invariance. Section 5 contains discussion of the results. 

2. General description of the non-linear electromagnetic field 

As we have already mentioned in the introduction the non-linear electromagnetic field 
can be described by a Langrangian of the following general form: 

28 = 2 ( S ,  P )  (2.1) 

(2.2) 

where 

S = -a fFufFy = i (E2-B2) 

P =  - $ f F y ~ j L V = E . B  

and fwy  is the dual field i~~~~~ f*". Field equations have the form 

f[[ILu, A I  = h = j "  (2.3) 

where 

Together with the fields E, B one introduces the fields D, H given by 

( 2 . 5 )  

D' = d2/aEi H '  = a2/dBi. (2.6) 

' 1 ijk j k  D' = -ho' H ' z - 3 ~  h 

and therefore 
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In the three-dimensional notation, field equations without sources have the form 

V . D = O  D = V X H  

V . B = O  ~ = - V X E .  

The first two equations follow from the variational principle whereas the last two are 
fulfilled identically due to potentials f,,, = A , ,  -A,,v. For a general Lagrangian (2.1) 
the connection between E, B and D ,  H is non-linear and therefore the equations (2.7) 
form a system of coupled partial non-linear equations. 

The Hamiltonian density is given by 

X(x ) = E .  D - 2 = E a2/aE - 9. (2.8) 

If we choose D and B as canonical variables then we have the correspondence 
p -+= D ,  q -+= B and E is the analogue of the velocity 4. In terms of canonical variables we 
have 

E' = a2t/dDi, H' = ax/aB' (2.9) 

and the dynamical field equations can be written as canonical equations: 

D = v x SHISB B =  -VXSH/SD ( H = j  Xd'x). (2.10) 

In any model of a non-linear electromagnetic field there exists a static solution 
describing the electric field of a point charge at rest. This is the spherically symmetric 
singular solution of the equation V . D = 0: 

e r  
D c , = - -  

4rr r 3  

and V . Dcl = 0 everywhere except at the origin: 

V . Dcl = e d 3 )  ( r ) .  

(2.11) 

(2.12) 

D,, describes the electric field of a point charge and is a solution of the field 

For a Lagrangian (2.1) we have 
equations in a theory with a delta-like source. 

D = A E + a B  

H=AB-ClE  
where 

A = as/as n = az/ap. 

(2.13) 

(2.14) 

For a purely electric field A is a function of E and E can be found by solving the first of 
the equations (2.13). The energy of such a field configuration is given by 

E = [Ec~(DcJDc~-z (DcJ l  d3x. (2.15) 

For the linear theory (2.15) is divergent. However, one can choose 3 to make the 
energy finite. One such possibility is given by the Born-Infeld model of a non-linear 
electromagnetic field with the non-polynomial Lagrangian: 

b 2  b4 
(2.16) 
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b is a parameter with the dimension of the field and its inverse plays the role of a 
dimensional coupling constant. For b + CO the coupling of the field to itself vanishes and 
2 ( x )  tends to the Lagrangian of the Maxwell theory: T ( x )  = S .  The Hamiltonian 
density has the form: 

B 2 + D 2  (B xD)2 ll2 

b4 ) %(x) = b2 [ (1 +-- + 
b2  

(2.17) 

and the energy is positive definite. The electric field corresponding to (2.11) is, in this 
theory, given by 

where 

(2.18) 

(2.19) 

has the dimension of length. We see that there is a natural length scale in the theory. 
According to (2.17) and (2.15) the energy of the field (2.18) is given by 

DZ1 ’” e 2  
E = b2 1 [ ( 1 + 7) - l] d3x = - [ (A4  + 1)”‘ - A  2 ]  dA (2.20) 

41~1 o 

(A = r / l ) .  This integral is convergent and the energy of the Coulomb field is finite. 

3. Small oscillations around the classical solution 

In this section we shall consider small oscillations around the classical solution given by 
(2.11) and (2.13). Due to the considerable simplicity of the Born-Infeld model of the 
electromagnetic field the calculations can be, to a large extent, performed analytically. 

To proceed, let us assume that the classical solution has been perturbed by a small 
time-dependent field: 

D ~ = D ; I + ~ ~  Hi = hi (3.1) 

and 

Ei = E;‘ + ei Bi = bi. 

In terms of the field tensor we have 

f F U  = e”:y + +&U 

(3.2) 

(3.3) 

and we must expand D and H up to terms linear in e and 6. From (2.13) and (2.14) it 
now follows that 

Di = 07‘ + G..e. I J  I (3.4) 

where 
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and 
-112 

where 1 is given by (2.19). 
In the same way we get for the magnetic field h(  = H ) .  

(3.6) 

(3.7) 
L U  

where bP4 is the spatial part of the field tensor q5,Y. The equations V . D = 0 and 
D = V x H  now give 

( 3 . 8 ~ )  

(3.8b) 

where 

Equation ( 3 . 8 ~ )  has to be valid every where except, possibly at the origin, for the same 
reasons that the equation VDc' = 0 is not fulfilled at the origin. Possible violation of the 
equation ( 3 . 8 ~ )  for r = 0 is connected with the vacuum polarisation which leads to the 
renormalisation of the charge e. This point will be discussed later. 

Assuming now the time dependence in the form 

A J X )  = ~ ( r )  e-'" (3.10) 

we see that, due to the antisymmetry properties of Gimpq, equation ( 3 . 8 ~ )  is a 
consequence of (3.8b).  Equations (3.8) could also be obtained with an expansion of the 
Lagrangian up to terms quadratic in q51Lv or of the Hamiltonian up to terms quadratic in 
b and d.  

Owing to the spherical symmetry of the classical solution (2.1 1)  and (2.18), equation 
(3.8) can be solved in the spherical coordinates. Angular part will be expressed in terms 
of the vector spherical functions 

( 3 . 1 1 ~ )  

(3.11b) 

3.1. Magnetic photons 

We shall consider the first magnetic component of small oscillations whose angular 
dependence is given by Y$z. Oscillations of the magnetic type can be considered 
separately since their parity is different from the parity of Yyh and YYh. We choose the 
gauge I)~ = 0 and then put 

+ ( r )  = ~ $ 2  (n) f" ' ( r )  (3.12) 

where + is the space-dependent part of the vector potential. 
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It can easily be shown that equation ( 3 . 8 ~ )  is fulfilled identically and 

G '  lmpq 4:;) = 2Gimpqap4q e-'"'. (3.13) 

Using equations (3 .9)  and (3.13) we get 

G .  lmpq P a 4 = - - T E i m n E p q j E E C n l E F 1 f a p Y ~ m )  1 Acl 2 6  

-$Acl ( ( a i Y t )  -amYlm))f(m) + ( x i y e )  - ~ ~ y $ ~ ) ) - ) ,  f ( m ) '  

r 

For the right-hand side of (3.8b) we have 

am ( G impq a p 4 q  1 

(3.14) 

(3.15) 

where the prime denotes differentiation with respect to r and Yf" = Y$zl .  It is  
straightforward to show that 

1 
r (3.16) v2 y ( m )  

JM,! = -7 J ( J  $. 1)  Y$zl 

and 

(3.17) 

4oi = -iw yj"f'" ( r )  (3.18) 

Substituting (3.15) and (3.18) into (3 .8b)  and using (3.16) and (3.17) we obtain the 
radial equation for f"' : 

(3.19) 

Furthermore we substitute 

(3.20) f ( m )  -- ( 1 4 + r 4 ) - 1 / 4 ~ ( m )  

and introduce the dimensionless variable x = r / l .  For we get 

(3.21) 

where E = 01 is the dimensionless energy parameter. (3.21) is the Schriidinger-type 
equation with the potential V(m)  : 

J(J+ l ) x 4 ( x 4 + 1 ) + 5 x 4 + 2  
x 2 ( x 4  + 1)2 

vim) ( x )  = (3.22) 

This J-dependent potential behaves like 2 / x 2  for x + 0 and J ( J  + 1)/x2 for x -+CO. We 
see that the repulsive part of the potential for x + 0 is independent of J and therefore 
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there is no centrifugal barrier in the usual quantum-mechanical sense. Furthermore, 
V'" is always positive but in general it is not monotonic. 

J ( J  + l ) X 1 *  + 15x8-[ . r (~ + 1) -5]x4+2 = 0. 

Zeros of the derivative of V'" are given by roots of the following equation: 

(3.23) 

This cubic equation for x4 has no real positive roots for J = 1, 2, 3 but for J -- '4 the 
potential V'" has one minimum and one maximum at positive values of x. Therefore, 
for J 3 4  there will be a 'potential barrier' in the Schrodinger equation (4.5). Locations 
and values of the extrema are given in table 1. 

Table 1. 

4 0.641 
5 0.541 
6 0,484 
7 0.447 
8 0.416 
9 0.391 

10 0.372 
11 0.353 
12 0.340 
14 0.315 

12.10 
15.13 
18.05 
20.94 
23.81 
26.67 
29.52 
32.36 
35.21 
40.89 

0.816 
0.897 
0.928 
0.947 
0.959 
0.967 
0.972 
0.978 
0.982 
0.986 

12.27 
17.05 
22.95 
29.90 
37.86 
47.84 
56.82 
67.81 
79.80 

106.79 

We see that the depth of the potential well increases with increasing J and therefore 
for values of J larger than some critical value JCrit we may expect that a 'resonance' or a 
metastable excited state would appear. For resonant values of E ,  E = ere,, the amplitude 
of the function I?'"') inside the potential well will be much larger than the amplitude of 
the function outside. Approximate values of E, , ,  can be found as bound-state energies 
in the potential equal to V'" up to x = xmax and equal to constant = for x > xmax. 
Resonant values of E will depend on J giving a trajectory eres ( J ) .  

Since V'"') is positive for all values of J (3.21) does not have negative eigenvalues 
and therefore the magnetic component of small oscillations around classical solution 
does not contribute to any instability of a charged particle. 

A solution which is regular for x = 0 behaves like x2, and for x + CO we find easily 
that 

f'" - e ' e x / X ,  (3.24) 

Therefore magnetic photons contribute to the electromagnetic field in the wave zone. 

X + ' X  

3.2. Electric and longitudinal photons 

We cannot now consider Y'e) and Y'") separately since, due to their having the same 
parity, these components of the electromagnetic field mix in the equations. It is more 
convenient to use from the beginning the field tensor, not the potentials, and therefore 
we assume: 

(3.25 a )  

(3.256) 

4oj = -iw[ Y$$Je)(r) + Y Y L , ~ ~ ) ( ~ ) ]  e-'"' 

4,i = (xl Y%, -xjyYA8)h(r) e-'"'. 
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It can be shown that (3.25b) is the most general form of the magnetic field given by the 
electric and longitudinal parts of the vector potential. Since we have not introduced the 
potentials we must require now that the equations V . B = 0, h = -V x E are fulfilled. It 
can easily be shown that V . b = 0 identically and from the second equation we have 

(3.26) 

where 

F'') = rf(e). (3.27) 

Let us now consider the first equation ( 3 . 8 ~ ) .  Although this is not an independent 
equation we consider it separately since, as we shall see, it follows from (3 .8a)  that the 
longitudinal part of the field gives rise to vacuum polarisation. We have 

(3.28) 

(3.29) 

The delta function term is responsible for the vacuum polarisation and renormalisation 
of the charge. Although the coefficient at the delta function is infinite for r -> 0 it gives a 
finite contribution when multiplied by f'"). 

From ( 3 . 2 5 ~ )  we have 

(3.30) 
Gi,ai40j = -~~e- i" tAcl  [ -T i [J(J+ 1)]1/2F(e) - 2 f ( O )  - I (  1 ++! D 2  f(0)" ) ] YJM. r r b 

The radial part of the constraint equation ( 3 . 8 ~ )  for r # 0 now becomes 

(3.31) 

We have further that 

(3 .32a)  

Gimpq4pq = - A c l ( x i Y ~ '  - xm Y!" )he-'"'. (3 .32b)  

Substituting these expressions into (3.86) and comparing on both sides coefficients at 
Y%,i and Y$%,i we get two first-order equations for h and f ( e ) .  Together with (3.26) 
and (3.31) we get 

(3 .33a)  

(3.336) 

x 4 f  1 d H  x 4  + 1 F ( e )  = 0 + 2xH + E - - _- 
x2 dx x4 

E x 4 +  4--- x 1 dF'" dx ( x $ 1 ~ 2 - J ( J + 1 ) ) H = 0  - 

F ( O )  = [ J ( J +  - C + x 2 H )  
dx (3 .33c)  
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x4-2 io) x 4 + l d F i 0 )  
X x dx 

[J (J  + 1)]1’2F(e) + 2 7 F $7 -- - 0  (3.33d) 

where H = 13h, F(O) = If‘’) and Fie) = r f ( e ) .  The constraint equation (3 .33d)  follows 
from the first three equations. 

We can calculate F(e)  from ( 3 . 3 3 ~ )  and substitute it into (3.33b),  thus obtaining a 
second-order equation for H. Having found the solution of this equation we can find 
the two remaining functions F“’ and F@).  The second-order equation for H has the 
form: 

(3.34) 
d 2 H  2 2x4+ 1 d H  
7+-7-+ 
dx x x + 1  dx 

Substituting 

H = X - 1 ( X 4 + 1 ) - ” 4 X  (3.35) 

we get for x 

2 J ( J  + 1)x4 + [J(J + 1) - 51 
(x4+ 1)2 

2 
X = E  x, -- d 2 X + X  

dx 
(3.36) 

The potential V ( e )  in this equation goes to zero when x + 0 and there is no centrifugal 
barrier at all. For J = 1 Vie) has negative minimum and positive maximum whereas for 
J 3 2 Vie) 2 0 and has one maximum. Locations and values of the extrema are given in 
table 2. 

Table 2. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1.643 
1.266 
1.127 
1.072 
1.046 
1.032 
1.024 
1.018 
1.014 
1.012 
1.010 
1.008 

0.455 
2.065 
4.903 
8.837 

13.806 
19.789 
26.779 
34,772 
43.768 
53,765 
64.762 
76.760 

Again the depth of the potential well increases with increasing J and we may expect 
resonances lying on the trajectory eres(J).  The only value of J for which a negative 
eigenvalue, e 2  < 0, could occur is J = 1. But it can be shown that the first and only 
eigenvalue for J = 1 is E = 0. It corresponds to the zero mode connected with trans- 
lation invariance of the theory. Since for J >  1 we evidently do not have negative 
eigenvalues, we come to the conclusion that the charged particle in the Born-Infeld 
model is described by a stable configuration of the electromagnetic field. 
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Let us now consider the asymptotic behaviour of the electric and longitudinal 
components of the field. For x +CC we get easily 

(3.37) 

From (3.25) we see that H and f'" contribute to the electromagnetic field in the wave 
zone whereas the longitudinal part F(O) falls off rapidly and does not contribute to the 
energy flux across a large sphere in the asymptotic region of space. 

For small x we may assume a power series expansion for F'" and H. We find then 
that H contains only even powers of x and F(e)  contains only odd powers of x: 

and therefore 

(3.386) 

( 3 . 3 8 ~ )  

3.3. Vacuum polarisation around the classical solution 

We shall now study vacuum polarisation effects which lead to the renormalisation of the 
bare charge e in (2.11). The magnitude of the charge can be found from the equation 

v . D = f d 3 ' ( r ) .  

We have now 

Di = D;' + Gij40i. 

(3.39) 

(3.40) 

For P # 0, ai(Gij&j) = 0 and from (3.29) we see that this equation is not true for r = 0. 
We have therefore 

(3.41) 

Only the longitudinal part of qhoi contributes since 
the polarisation charge for a partial wave with given J is equal to 

= 0. According to ( 3 . 2 5 ~ )  

(3.42) 

But A = ( 1  + 14/r4)1'2 - r-' for r + 0 and f% - r 4 ,  Therefore, expression (3.42) is finite 
and different from zero. The exact magnitude of the vacuum polarisation correction to 
the bare charge e depends on the normalisation of fz. 

Note that the vacuum polarisation is induced only by the longitudinal component of 
the field 4cLy whereas the electric and magnetic components, which are transverse with 
respect to i, do not contribute to this phenomenon. On the other hand, the longitudinal 
field does not contribute to the electromagnetic field in the wave zone and cannot be 
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detected by a device located in the asymptotic region of space. We may say that the 
longitudinal field forms the cloud of virtual photons surrounding the charged particle 
and giving rise to the charge renormalisation. 

4. Zero modes 

In any field theory possessing certain symmetry properties small oscillations around the 
classical solution have an eigenvalue equal to zero. The simplest example of a zero 
mode is the derivative of the kink solution in 1 -+ 1 dimensional d4 theory (Jackiw 1977). 
In the Born-Infeld model discussed in this paper we may expect zero modes to be 
connected with rotational and translational invariance. However, since the classical 
solution D'l is spherically symmetric, space rotations do not lead to new solutions. 
Therefore there will be no zero modes connected with rotational invariance. 

On the other hand, translational invariance leads to a new solution D" = 
( e / 4 7 ~ ) ( r  - ro)/lr  -- roI3 with the singularity shifted to ro and we may expect zero 
modes connected with this invariance. Solutions corresponding to the translational 
zero mode are given by d,D;' for three independent directions of translation j = 1, 2, 3. 
Let us now express D"' by E"': 

0;' =Et'(1 - E f l / b 2 ) - " 2 .  (4.1) 

ap; '  = G , ~ ~ , E ;  (4.2) 

Then we can easily show that 

where is given by (3.5).  From (4.2) we see that 8,E;l is a small oscillation around the 
classical solution since it is connected with the corresponding electric induction field in a 
proper way. 

The explicit form of the zero mode solution can be easily found: 

(4.3) 

There are no zero modes connected with magnetic photons since V ( m )  > 0. We assume 

( 4 . 5 ~ )  

(4.5b) 

( 4 . 6 ~ )  

(4.6b) 

Since yje) = - [J(J + 1)]-'/2rpjYJM and Y?' = - i i j Y J M  we see that only J = 1 gives a 
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non-vanishing contribution. Using further that 

(4.7) 

where L is the angular momentum operator, we find 

[J(J + 1)]”* [ Y : ,  d? 

[ Y:M d?. 

b12 
r(r4+ i 4 p 2  r 

(r4+141312 r 

fYLl = i 

fYL, = i 
2b12r3 

(4.8a) 

(4.86) 

Introducing now the dimensionless variable x = r/l and F:e) = xfje), Fjo) = lflo) w e find 

(4.9) F ( e ) ’  - 1/2 (0) 
JM, - -[J(J+ 111 F J M ~ .  

Let us now consider the zero modes specifying equations (3.33) for the case E = 0. 
From (3.33b) we see that H = 0 (i.e. no magnetic field with the zero mode) and from 
( 3 . 3 3 ~ )  we obtain F(e’’ = - [J(J + 1)]1/2F(o’, in agreement with (4.9). Eliminating F(e’  
from (3 .334  and ( 3 . 3 3 ~ )  with H = 0 we find 

Introducing the variable 
4 x = - - 2  

and then substituting 

(1 - 2 )  -3/24 F(0) = 3/4 

we reduce (4.10) to the hypergeometric equation: 

d 2 4  w 
z (-2 - 1) -+ [ y  - ( a  + p + 1)2] - - apq5 = 0 dz dz 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

with 

(4.14) 3 = - $ ( J + 2 )  p =$(J-1) y = 4. 

Two independent solutions of this equation give, for F‘”), 

(4.15a) 

(4.15b) 

Only solution (4.15a) with J = 1 has the proper behaviour at infinity and therefore we 
have, for the zero mode solution, 

(4.16) 

This expression is consistent with the zero mode solution (4.8b) obtained from djE;l, 
There is no dependence on the direction of the translation in (4.16) since the radial part 
of the zero mode is the same for j = 1 , 2 , 3 .  
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5. Conclusions 

We have investigated the problem of the stability of the charged particle in non-linear 
electrodynamics. Our main conclusion is that the Coulomb solution in the Born-Infeld 
model of a non-linear electromagnetic field is stable, i.e. small pertubations of this 
solution do not lead to the field configurations either growing or decreasing in time. 

We also found some other interesting properties of the spectrum of small oscil- 
lations around the classical solution describing a charged particle. It turned out that the 
spectrum is continuous and corresponds to the Schrodinger equation with the potential 
possessing a barrier-like structure. Since the depth of the potential well increases with 
increasing total spin quantum number J we may expect that a sort of resonant state 
would appear with the energies eres depending on J. 

One of the characteristic features of the spectrum is that the higher is total spin J the 
larger is the probability of formation of a quasi-bound state since the potential well 
becomes deeper with increasing J. This is not what we are accustomed to in ordinary 
quantum mechanics. Usually the higher the angular momentum 1 is (and therefore the 
centrifugal force) the larger the probability is that the particle could be found far from 
the origin (the wavefunction goes to zero for r -> 0 more rapidly for higher 1). 

However, in our case both the magnetic potential V ( m )  (3.22) and the electric 
potential V") (3.36) do not exhibit the usual behaviour of the effective potential in the 
radial Schrodinger equation. The repulsive barrier in V(m) for x + 0 is of the form 2/x2 
instead of the standard J ( J  + 1)/x2 behaviour. For x + 0 the wavefunction goes to zero 
like x 2  independent of J. Consequently there is no tendency to pull the particle away 
with increasing J.  For the electric potential V'" there is no repulsive barrier at all and 
for x -+ 0, V ( e )  -+ 0 like J(J + 1 ) ~ ' .  These considerations show that the usual intuitions 
taken from quantum mechanics cannot be applied and do not lead to proper qualitative 
results. 

In the quantised version of the theory the resonances mentioned above would 
correspond to excited states of the charged particle; these states would be unstable 
against decay into a massless vector particle (the photon) and a charged particle in the 
ground state. For appropriately high J more than one resonance would appear and 
then we may have a 'cascade': 

e** +c*+ y + c + 2 y  

where c symbolises a charged particle. In the scattering sector there should appear 
resonances in the cross sections for E = E , , ~ .  
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